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Abstract
Novikov algebras were introduced in connection with hydrodynamic-type
Poisson brackets and Hamiltonian operators in the formal variational calculus.
We have given a kind of realization of transitive Novikov algebras through
the Novikov algebras given by S Gelfand and their compatible infinitesimal
deformations in Bai and Meng (2001 J. Phys. A: Math. Gen. 34 3363–72).
As a further and continuous study, we extend this realization theory to the non-
transitive Novikov algebras in the paper. In two and three dimensions, we find
that all non-transitive Novikov algebras also can be realized as the Novikov
algebras given by S Gelfand and their compatible infinitesimal deformations.
Moreover, they have simpler formulae.

PACS numbers: 02.20.-a, 02.10.-v, 47.20.-k

1. Introduction

Hamiltonian operators have a close relation with certain algebraic structures [1–8]. Gel’fand
and Diki [1, 2] introduced formal variational calculus and found certain interesting Poisson
structures when they studied Hamiltonian systems related to certain nonlinear partial
differential equations, such as KdV equations. In [3], more connections between Hamiltonian
operators and certain algebraic structures were found. Dubrovin, Balanskii and Novikov [4–6]
studied similar Poisson structures from another point of view. One of the algebraic structures
appearing in [3] and [6], which was called ‘Novikov algebra’ by Osborn [9–14], was introduced
in connection with hydrodynamic-type Poisson brackets as follows:

{ui(x), uj (y)} = gij (u(x))δ′(x − y) +
N∑

k=1

uk
xb

ij

k (u(x))δ(x − y). (1.1)

A Novikov algebra A is a vector space over a field F with a bilinear product (x, y) → xy

satisfying

(x1, x2, x3) = (x2, x1, x3) (1.2)
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and

(x1x2)x3 = (x1x3)x2 (1.3)

for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3 − x1(x2x3). (1.4)

Novikov algebras are a special class of left-symmetric algebras which only satisfy (1.2). Left-
symmetric algebras are non-associative algebras arising from the study of affine manifolds,
affine structures and convex homogeneous cones [15–18].

The commutator of a Novikov algebra (or a left-symmetric algebra) A

[x, y] = xy − yx (1.5)

defines a (sub-adjacent) Lie algebra G = G(A). Let Lx , Rx denote left and right multiplication
respectively, i.e., Lx(y) = xy, Rx(y) = yx, ∀x, y ∈ A. Then for a Novikov algebra, the
left multiplication operators form a Lie algebra and the right multiplication operators are
commutative.

Zel’manov [19] gave a fundamental structure theory of a finite-dimensional Novikov
algebra over an algebraically closed field with characteristic 0: a Novikov algebra A is called
right-nilpotent or transitive if every Rx is nilpotent. Then by (1.3), a finite-dimensional Novikov
algebra A contains a (unique) largest transitive ideal N(A) (is called the radical of A) and
the quotient algebra A/N(A) is a direct sum of fields. The transitivity corresponds to the
completeness of the affine manifolds in geometry [15, 16].

However, for such a non-associative algebra system, it is obviously difficult to give a more
detailed structure theory, and needless to say a complete classification. This can be seen from
the complicated classification of Novikov algebras in low dimensions [20]. As we said in [21],
one of the reasons is that there is not a ‘suitable’ representation theory for Novikov algebras
because they are not associative in general (hence their representations should have bimodule
structures). Moreover, the classification of non-transitive Novikov algebras are still unknown
even when we know their transitive radicals N(A) since the extensions by N(A) is essential in
general [20]. So it is important to find some realizations of both transitive and non-transitive
Novikov algebras at first, which will be useful to construct a general theory.

The first important kind of Novikov algebras was found as follows: let (A, ·) be a
commutative-associative algebra, and D be its derivation. Then the new product

a ∗x b = a · Db + x · a · b (1.6)

makes (A, ∗x) become a Novikov algebra for x = 0 as per S Gelfand [3], for x ∈ F by
Filipov [22] and for a fixed element x ∈ A by Xu [13]. In [21], we show that the algebra
(A, ∗) = (A, ∗0) given by S Gelfand is transitive. We also construct a deformation theory
and the Novikov algebras given by Filipov and Xu are the special compatible infinitesimal
deformations of ones given by S Gelfand. Moreover, we prove that the transitive Novikov
algebras in dimensions of � 3 can be realized as the algebras defined by S Gelfand and their
compatible infinitesimal deformations. We conjecture that this conclusion can be extended to
higher dimensions.

Thus, as a further and continuous study, we will extend this realization theory to non-
transitive Novikov algebras in this paper. Although the ideas and methods that we use in this
paper are similar to those in [21], we would like to point out that these results are non-trivial,
and together with transitive Novikov algebras can be used to construct a complete realization
theory. Moreover, on comparison with the realizations of transitive Novikov algebras, we can
see that the realizations of non-transitive Novikov algebras in low dimensions have simpler
formulae, which will be very useful in any applications. The paper is organized as follows. In
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section 2 we briefly introduce the deformation theory of Novikov algebras and the realization of
transitive Novikov algebras given in [21]. In section 3, we give the two-dimensional realization
of non-transitive Novikov algebras. In section 4, we give the realization of three-dimensional
non-transitive Novikov algebras. In section 5, we give some conclusions and conjectures based
on the discussions in the previous sections.

2. The deformation of Novikov algebras and the realization of transitive Novikov
algebras

For completeness, we briefly introduce the main results in [21] in this section. Let (A, ∗) be
a Novikov algebra, and gp : A × A → A be a bilinear product defined by

gq(a, b) = a ∗ b + qG1(a, b) + q2G2(a, b) + q3G3(a, b) + · · · (2.1)

where Gi are bilinear products with G0(a, b) = a ∗ b. We call (Aq, gq) a deformation of
(A, ∗) if (Aq, gq) is a family of Novikov algebras. In particular, we call G1 an infinitesimal
deformation if the deformation is given by

gq(a, b) = a ∗ b + qG1(a, b) (2.2)

that is, G2 = G3 = · · · = 0. G1 is an infinitesimal deformation if and only if

G1(a, b ∗ c) − G1(a ∗ b, c) + G1(b ∗ a, c)

−G1(b, a ∗ c) + a ∗ G1(b, c) − G1(a, b) ∗ c

+G1(b, a) ∗ c − b ∗ G1(a, c) = 0

(2.3)

G1(a, b) ∗ c − G1(a, c) ∗ b + G1(a ∗ b, c) − G1(a ∗ c, b) = 0. (2.4)

Moreover, G1 is called a compatible infinitesimal deformation if G1 is commutative. Any
Novikov algebra and its compatible infinitesimal deformation have the same sub-adjacent Lie
algebra. An infinitesimal deformation is called special if the family of Novikov algebras
(Aq, gq) defined by (2.2) is mutually isomorphic for q �= 0.

As in the introduction, let (A, ·) be a finite-dimensional commutative-associative algebra
and D be its derivation. Then (A, ∗) is a Novikov algebra with the product

a ∗ b = a · Db. (2.5)

Moreover, (A, ∗) is transitive. For a Novikov algebra (A, ∗) defined by the above equation,
both G1(a, b) = a · b and G1(a, b) = x · a · b for a fixed x ∈ A satisfy (2.3) and (2.4). So
(A, ∗x) is a Novikov algebra with the product

a ∗x b = a · Db + x · a · b (2.6)

for any x ∈ F and x ∈ A, and the Novikov algebras defined by (2.6) are the compatible
infinitesimal deformations of the Novikov algebras defined by (2.5).

We have proved that the two- and three-dimensional transitive Novikov algebras can be
realized as the Novikov algebras defined by (2.5) and (2.6), except (A6) with l = 0 and (A8)
and (A10). For these exceptional cases, we have proved that they can be realized as special
compatible infinitesimal deformations of some transitive Novikov algebras defined by (2.5).

3. The realization of non-transitive Novikov algebras in two dimensions

It is easy to see that the Novikov algebra (A, ∗x) defined by (2.6) is transitive if (A, ·) is a
nilpotent commutative-associative algebra. Thus, this means that we should suppose (A, ·) is
a non-nilpotent commutative-associative algebra if we try to find the non-transitive algebras
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through (2.6). In two dimensions, any non-transitive Novikov algebra over the complex-
number field can be realized as a Novikov algebra defined by (2.6), which can be seen from
the following table: recall that the (form) characteristic matrix of a Novikov algebra is defined
as

A =
(∑n

k=1 ak
11ek · · · ∑n

k=1 ak
1nek

· · · · · · · · ·∑n
k=1 ak

n1ek · · · ∑n
k=1 ak

nnek

)
(3.1)

where {ei} is a basis of A and eiej = ∑n
k=1 ak

ij ek . Moreover, under the same basis, any
derivation D of A can be determined by a matrix; that is,

D =
(

a11 · · · a1n

· · · · · · · · ·
an1 · · · ann

)
D(ei) =

n∑
j=1

aij ej . (3.2)

Characteristic Characteristic
matrix of (A, ∗x) matrix of (A, ·) Derivation D x

(N1)

(
e1 0
0 e2

)
(N1)

(
e1 0
0 e2

)
D = 0 x = e1 + e2

(N2)

(
0 0
0 e2

)
(N2)

(
0 0
0 e2

)
D = 0 x = e2

(N3)

(
0 e1
e1 e2

)
(N3)

(
0 e1
e1 e2

)
D = 0 x = e2

(N4)

(
0 e1
0 e2

)
(N3)

(
0 e1
e1 e2

)
D =

(−1 0
0 0

)
x = e2

(N5)

(
0 e1
0 e1 + e2

)
(N3)

(
0 e1
e1 e2

)
D =

(−1 0
0 0

)
x = e1 + e2

(N6)

(
0 e1

le1 e2

)
l �= 0, 1

(N3)

(
0 e1
e1 e2

)
D =

(
l − 1 0

0 0

)
x = e2

The above table is obtained as follows: for every two-dimensional non-nilpotent commutative-
associative algebra with basis {e1, e2} and its corresponding derivation algebra (the
classification has already been given in [21]), we can obtain a series of Novikov algebras
(A, ∗x) for derivation D with parameters and x = λe1 + µe2 through (2.6) (of course many
of them are isomorphic [21]). Comparing all of them (for all non-nilpotent commutative-
associative algebras in two dimensions) with the classification of non-transitive Novikov
algebras in two dimensions which is given in [20], we can find they indeed include all two-
dimensional non-transitive Novikov algebras. Moreover, for the characteristic matrix (in the
first column) of every two-dimensional non-transitive Novikov algebra (A, ∗) given in [20],
we can choose a (not necessarily unique) commutative-associative algebra (A, ·) with the
corresponding characteristic matrix (in the second column) and a fixed derivation D (in the
third column) and a fixed element x (in the fourth column) such that ei ∗ej = ei ·Dej +x ·ei ·ej ,
which is listed in the above table.

4. The realization of non-transitive Novikov algebras in three dimensions

Let A be a three-dimensional non-transitive Novikov algebra over the complex-number field.
Then using the same method as in section 3 and comparing the corresponding results with the
classification of three-dimensional non-transitive Novikov algebras given in [20], we can find
that A can be realized as a Novikov algebra defined by (2.6) except A is type (E1). Similarly,
we can obtain the following table:
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Characteristic matrix Characteristic matrix
of (A, ∗x) of (A, ·) Derivation D x

(B1)

( 0 0 0
0 e2 0
0 0 e3

)
(B1)

( 0 0 0
0 e2 0
0 0 e3

)
D = 0 x = e2 + e3

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D = 0 x = e2 + e3

(B3)

( 0 0 e1
0 e2 0
0 0 e3

)
(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(−1 0 0
0 0 0
0 0 0

)
x = e2 + e3

(B4)

( 0 0 e1
0 e2 0
0 0 e1 + e3

)
(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(−1 0 0
0 0 0
0 0 0

)
x = e1 + e2 + e3

(B5)

( 0 0 e1
0 e2 0

le1 0 e3

)

l �= 0, 1

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(
l − 1 0 0

0 0 0
0 0 0

)
x = e2 + e3

(C1)

( 0 0 0
0 0 0
0 0 e3

)
(C1)

( 0 0 0
0 0 0
0 0 e3

)
D = 0 x = e3

(C2)

( 0 0 e1
0 0 0
e1 0 e3

) (C2)

( 0 0 e1
0 0 0
e1 0 e3

)

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D = 0

D = 0

x = e3

x = e3

(C3)

( 0 0 e1
0 0 0
0 0 e3

) (C2)

( 0 0 e1
0 0 0
e1 0 e3

)

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(−1 0 0
0 0 0
0 0 0

)

D =
(−1 0 0

0 0 0
0 0 0

)
x = e3

x = e3

(C4)

( 0 0 e1
0 0 0
0 0 e1 + e3

) (C2)

( 0 0 e1
0 0 0
e1 0 e3

)

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(−1 0 0
0 0 0
0 0 0

)

D =
(−1 0 0

0 0 0
0 0 0

)
x = e1 + e3

x = e1 + e3

(C5)

( 0 0 e1
0 0 0

le1 0 e3

)

l �= 0, 1

(C2)

( 0 0 e1
0 0 0
e1 0 e3

)

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

)
D =

(
l − 1 0 0

0 0 0
0 0 0

)

D =
(

l − 1 0 0
0 0 0
0 0 0

)
x = e3

x = e3

(C6)

( 0 0 e1
0 0 e2
e1 0 e3

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

( 0 0 0
0 −1 0
0 0 0

)
x = e3

(C7)

( 0 0 e1
0 0 e2
e1 0 e3 + e2

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

( 0 0 0
0 −1 0
0 0 0

)
x = e2 + e3

(C8)

( 0 0 e1
0 0 e2
0 0 e3

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(−1 0 0
0 −1 0
0 0 0

)
x = e3

(C9)

( 0 0 e1
0 0 e2

le1 0 e3

)

l �= 1, 0

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(
l − 1 0 0

0 −1 0
0 0 0

)
x = e3
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Characteristic matrix Characteristic matrix
of (A, ∗x) of (A, ·) Derivation D x

Continued

(C10)

( 0 0 e1
0 0 e2

le1 0 e3 + e2

)

l �= 1

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(
l − 1 0 0

0 −1 0
0 0 0

)
x = e2 + e3

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D = 0 x = e3

(C12)

( 0 0 e1
0 0 e2
e1 le2 e3

)

l �= 0, 1

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

( 0 0 0
0 l − 1 0
0 0 0

)
x = e3

(C13)

( 0 0 e1
0 0 e2

le1 ke2 e3

)

l, k �= 1, 0

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(
l − 1 0 0

0 k − 1 0
0 0 0

)
x = e3

(C14)

( 0 0 e1
0 0 e2
e1 e1 + e2 e3

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

( 0 0 0
1 0 0
0 0 0

)
x = e3

(C15)

( 0 0 e1
0 0 e2

le1 e1 + le2 e3

)

l �= 1, 0

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(
l − 1 0 0

1 l − 1 0
0 0 0

)
x = e3

(C16)

( 0 0 e1
0 0 e2
0 e1 e3

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(−1 0 0
1 −1 0
0 0 0

)
x = e3

(C17)

( 0 0 e1
0 0 e2
0 e1 e3 + e2

)
(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

)
D =

(−1 0 0
1 −1 0
0 0 0

)
x = e2 + e3

(C18)

( 0 0 e1 + e2
0 0 e2
0 −e2 e3

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

(−1 −1 0
0 −2 0
0 0 0

)
x = e3

(C19)

( 0 0 e1 + e2
0 0 e2
0 −e2 e3 + e1

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

(−1 −1 0
0 −2 0
0 0 0

)
x = e1 + e3

(D1)

(
e2 0 0
0 0 0
0 0 e3

)
(D1)

(
e2 0 0
0 0 0
0 0 e3

)
D = 0 x = e3

(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D = 0 x = e3

(D3)

(
e2 0 e1
0 0 e2

e1 + e2 e2 e3

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

( 0 1 0
0 0 0
0 0 0

)
x = e3

(D4)

(
e2 0 e1
0 0 e2

1
2 e1 0 e3

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

(− 1
2 0 0

0 −1 0
0 0 0

)
x = e3

(D5)

(
e2 0 e1
0 0 e2

1
2 e1 0 e3 + e2

)
(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

(− 1
2 0 0

0 −1 0
0 0 0

)
x = 2e2 + e3

(D6)

(
e2 0 e1
0 0 e2

le1 (2l − 1)e2 e3

)

l �= 1
2 , 1

(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

)
D =

(
l − 1 0 0

0 2(l − 1) 0
0 0 0

)
x = e3
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According to the classification of three-dimensional non-transitive Novikov algebras, there

is only type (E1):

( 0 0 0
−e1 0 0

0 0 e3

)
which cannot be of the form (A, ∗x) defined by (2.6). It is a

(unique) trivial extension by the two-dimensional non-commutative radical N(A) = T (3), i.e.,
it is the direct sum of T(3) and the field. It is isomorphic to a special (compatible) infinitesimal

deformation of type (A9)

( 0 0 0
0 0 0
0 e2 0

)
with G1 =

(
e1 0 0
0 0 0
0 0 0

)
which is isomorphic to (C1).

Recall that (A9) can be realized as (A, ∗), where (A, ·) is (B2) and D =
(

a11 0 0
0 0 0
0 0 0

)
with

a11 �= 0.

5. Conclusion and discussion

From the discussion in the previous sections, we have the following conclusion and conjecture.
(a) All two- and three-dimensional Novikov algebras can be realized as the Novikov

algebras defined by Gel’fand and their compatible infinitesimal deformations. We thus make
the following conjecture that this conclusion can be extended to higher dimensions:

Conjecture 1. All Novikov algebras can be realized as the algebras defined by Gel’fand and
their compatible infinitesimal deformations.

(b) In particular, except for one type (the direct sum of the non-associative radical and the
field), any two- and three-dimensional non-transitive Novikov algebra can be realized through
(2.6). Moreover, we find that the radical of such a Novikov algebra is commutative. Thus, we
have the following conjecture:

Conjecture 2. Non-transitive Novikov algebras with commutative radicals can be realized as
the algebras defined by (2.6).

A more general conjecture is:

Conjecture 3. Non-transitive Novikov algebras with associative radicals can be realized as
the algebras defined by (2.6).

(c) We would like to point out that type (C8) just corresponds to the Poisson brackets of
one-dimensional hydrodynamics that was discussed in [6].
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